

Centric Parts[®] Glossary of Braking Terms

Abrasive Friction	In a brake system, intermolecular bonds are broken for the conversion of Kinetic to Thermal energy. The term Abrasive friction is reference to one of two types of friction mechanisms. The other type being Adherent friction (see Adherent Friction). Abrasive friction is the mechanism where abrasive particles in the pad are in a crystalline sense harder than the materials in the rotor. The dust observed from brakes made from grey iron, no matter the color, is primarily from this rotor wear. The small amount that is from the pad is due to the abrasive particles in the pad, as they wear down and become dull, being dislodged due to the force acting on them.
ABS	Acronym for Anti-Lock Braking system. Anti Lock braking systems sense the speed and rate of deceleration of each of the wheels of a vehicle independently and, through a microprocessor control system, act to prevent lock up of any of the tires under braking force by controlling the line pressure to the wheel that is approaching lock up. While ABS controllers are constantly being developed with other design strategies, historically the system feels like it is cycling due to the system programming and design that is controlling pressure at the wheel cylinder by first isolating the driver then cyclically lowering then raising pressure to correspond to what is required. The pulsation the driver feels in the pedal is due to the edsign paradigm that uses the driver's pedal effort at any given instant to set the maximum pressure the system will yield. Most current passenger cars and trucks are fitted with ABS due to national and international laws, while even more elaborate system to control vehicle yaw or spin under extreme maneuvers is becoming a requirement. See "Active Handling".
Active Handling	Active Handling is an upcoming requirement for most new vehicles sold where the ABS systems basic components and programming are upgraded to act independent of driver brake system input. The ABS system has added sensors and programming to control the vehicle tendency to lose traction, spin (yaw), act unfavorably or even anticipate actions required like increasing brake force output beyond that being directed by the driver to improve the handling of the vehicle in complex dynamic situations. For example, one manufacturer's version applies the vehicle brakes when the vehicle is stopped or moving slowly and the automatic transmission is not in park but the driver's door is opened, anticipating that the driver has forgotten to set the parking brake if also not putting the transmission into park.
Adherent Friction	Adherent friction is reference to one of two types of friction mechanisms. The other type being Abrasive Friction (see Abrasive Friction). Adherent friction is the mechanism where a transfer of a thin layer of brake pad material bonds (adheres) to the rotor face. The transfer layer of pad material, once evenly established on the rotor, is what rubs on the brake pad. The intermolecular bonds that are broken, for the conversion of Kinetic to Thermal energy, are formed instantaneously before being broken again. Wear of the rotor during the braking cycle. This pad material transfer if uneven is called pad material deposits which leads to brake judder. Brake judder is often called warped rotors. See also "Transfer Layer", "Brake Judder" and "Warped Rotors"
Aluminum Beryllium	An engineered alloy of Aluminum of exceptional stiffness to weight ratio used for Formula One calipers (and Ilmor/Mercedes engine blocks) in the late 1990s. Now outlawed on health grounds.
AK Master Test	This is a basic dynamometer test used to characterize a pad materials friction couple with a given rotor material or substrate as in the special case of Carbon Ceramic rotors. Quoted from the SAE J2522 issued in 6/03, "The AK Working Group, which represents European manufacturers of friction linings and passenger car brakes, has developed an "AK Master" Standard in recent years. The SAE Brake Dynamometer Test Code Standards Committee considers this standard useful in supporting the technological efforts intended to improve motor vehicle braking systems overall performance and safety. Therefore this committee is making the AK Master standard available to the industry as an SAE Recommended Practice." So although developed outside of the SAE standards process, AK Master has become SAE J2522. The test includes a "green" or as installed friction testing, multiple burnishing phases, post-burnishing friction couple testing to determine fade resistance and then post fade friction testing. At Centric Parts we run AK Master testing on our dynamometers as requested or required as well as other test protocols. See "Friction Couple and "Fade Resistance" "J Standards, Procedures or Recommended Practices, SAE, J2522".
Aluminum Lithium	An engineered alloy of Aluminum of high strength and stiffness to weight ratio currently being used for Formula One calipers.
Anti-lock Braking System	Anti lock braking systems sense the speed and rate of deceleration of each of the wheels of a vehicle independently and, through a microprocessor control system, act to prevent lock up of any of the tires under braking force by cycling the line pressure to the wheel that is approaching lock up. Most current passenger cars are fitted with ABS.
Anti-squeal plates	Very thin stiff metallic or composite plates, sometimes coated with a high temperature solid lubricant, inserted between the pad backing plates and caliper pistons on passenger cars to reduce or eliminate brake squeal.

Asbestos	Impure magnesium silicate with very low thermal conductivity - once used as an insulating material and as one of the components in brake friction materials. Starting in the mid-1980s, attempts were made to ban its use in brake friction materials. In fact, in 1989 EPA did ban asbestos in brakes but it was challenged in court and defeated. In 1993, the EPA again tried to reach agreement with at least one half of all the OEMS to ban its use but the voluntary plan was never implemented and there has been no subsequent successful effort to ban its use. Based on product liability concerns alone, manufacturers and distributors of brake friction material have eliminated its use in their product. There is no asbestos in any product sold by CWD group of companies or in any of our brands: Centric, Posi Quiet, Powerslot or Stoptech.	
Backing plate	The steel portion of a disc bonded. The backing plate dimensions, flatness and s the thicker the backing pla unless the pad is very sho	brake pad which contacts the caliper piston(s) and to which the friction material is a provides the necessary stiffness and mechanical strength to the pad system. Its surface finish must be closely controlled. The longer or the larger the area of the pad, te must be. Backing plates of less than about 3 mm should be viewed with suspicion rt.
Bedding In	Also called "breaking in" of	r "break-in". There are two types of "bedding in" with regard to brakes:
	1. Bedding In of friction material:	All friction materials contain volatile elements used as binders. In the initial thermal cycling of the material these volatiles boil off, forming a gaseous layer between the friction material and the brake. A bedded pad will exhibit a layer of discolored material from 1.5 to 3mm thick. Alternately, some friction is manufactured "scorched" or "pre-scorched" to eliminate the need to perform this step. See "Scorched". Pads that have been scorched only require a few brake applications to be able feel ready to use. As is the case below the brakes will feel better with continued use.
	2. Bedding In of the disc:	Before using a new disc, all machining and preservative oils must be completely removed following the disc manufacturer's recommendations. Usually it involves washing with soap and water or using one of the proprietary "brake clean" compounds. The disc should then be mounted and checked for run out. It should be bedded in with a number of moderate stops allowing for a steady build up of temperature to the pad manufactures recommend limit followed by complete cool off. Generally the brake system bed-in will improve by performing a second cycle and cool off. When completed the entire surface of the disc will be evenly discolored. This method will prevent thermal shock, distortion and the formation of "hot spots" (regional deposition of pad material which results in a permanent transformation of the cast iron underneath the deposit) and ensure maximum disc life.
BEEP	BEEP is an acronym for B developed by the Brake M See "SAE" and "Brake Ma standard and the BMC's v Practices, SAE". Formally friction industry that follow: voluntary industry standard program monitors the sam temperature operation incl weight, failed system and	rake Effectiveness Evaluation Process. It is a test protocol and certification process lanufacturers Council (BMC) for friction materials. BEEP is administered by the SAE. nufacturers Council". The BEEP program uses the SAE J2430 brake dynamometer ehicle specific dynamometer test data model. See "J Standards or Recommended released in 2001, the BEEP program is the only certification program in the brake s the National Highway Traffic Safety Administration (NHTSA) directive to use ds that are developed by standards development organizations like SAE. The BEEP iple product's performance relative to its braking torque ability during normal and high luding moderate and high speed stops and considering curb and gross vehicle brake recovery as required in FMVSS 105 and 135.
Bell	See "hat"	
Bias bar	A system allowing rapid ac connects the pushrods of of the braking ratio.	djustment of the front to rear braking force on a car. Universal in racing, the bias bar dual master cylinders with an adjustable fulcrum allowing crew or driver adjustment
Bite	The speed at which the fri The amount of bite is a co in braking. In racing, differ	ction material reaches its maximum coefficient of friction when braking is initiated. mpromise. Too much bite makes initial modulation difficult. Too little causes a delay ent drivers prefer pads with different degrees of bite.
Blades	See "vanes"	
Bleeding	The process of removing a system while simultaneous overheated fluid and/or air performed on a regular ba	air bubbles from a newly filled system or existing brake fluid from the hydraulic sly replacing it with fresh fluid. In the letter case this is typically done to remove bubbles from the hydraulic circuit(s) shortly following hard use, but should be sis as well due to the natural tendency of brake fluid to absorb water over time.
Bluing	Discoloring of cast iron rot reduced rotor life, it is norr	ors due to heat. Although bluing is evidence of thermal stress and will lead to nal under repeated hard braking and is not a cause for concern.
ВМС	BMC is an acronym for Bra	ake Manufacturers Council. See "Brake Manufacturers Council".

Brake bias	The term used to indicate the ratio between the amount of brake torque exerted by the front brakes compared with the rear. Brake bias is normally expressed as a percentage of brake torque at one end of the car to the total brake torque, as in "60% front".
Brake booster	A vacuum or hydraulic assist device that amplifies pedal force. In some cases, this assist is accompanied by small increases in pedal travel and reductions in pedal firmness. However, due to its compact design and efficiency, the vacuum boosted version is virtually universal on passenger cars up through 2000. At around that time hydraulic power boosted systems began to be used in some luxury and armored cars.
Braking efficiency	The ratio of actual deceleration achieved on a given surface compared with the theoretical maximum.
Brake Judder	Brake Judder is a term used by brake manufacturers to describe the physical effects of non-uniform brake material deposits from an Adherent friction material type on a rotor. The physical observation of shaking in the pedal and steering comes from the oscillating hydraulic pulsation and high and low torque created by the pad interacting respectively with a slightly varying rotor thickness and friction coefficient due to the uneven pad material deposits. See also "Adherent Friction", "Transfer Layer", "Warped rotors".
Brake line pressure	The hydraulic pressure at any instance within the brake lines. Brake line pressure in inch-pound/second (IPS) units of pounds per square inch is the force applied to the brake pedal in pounds multiplied by the mechanical pedal ratio (plus any booster assist where applicable) divided by the area of the master cylinder piston in square inches. For the same amount of pedal force, the smaller the master cylinder and/or the greater the mechanical pedal ratio and/or booster contribution, the greater the brake line pressure and the longer the pedal travel.
Brake Manufacturers Council	Brake Manufacturers Council is industry association and since 2010 is part of Automotive Aftermarket Suppliers Association (AASA).
Braking torque	Braking torque in pounds-feet, in the inch-pound- second (IPS) units, on a single wheel is the effective rotor radius in inches times clamping force in pounds times the coefficient of friction of the pad against the rotor (a unit-less value) all divided by 12. Braking torque is the force that actually decelerates the wheel and tire. To increase the braking torque it is necessary to increase the line pressure, the piston area (clamping force), the coefficient of friction, or the effective rotor radius. Increasing the pad area will not increase the braking torque.
Burnishing	Burnishing is an industry term for additional conditioning of the brake pad after primary manufacturing. It is also often referred to as a step before testing. In this latter context, the term is most often used to say that the pad is fully matured by performing a number of burnishing cycles on a vehicle or a dynamometer. Again in this context, the number of brake applies can the equivalent of as much as 500 to 1000 miles (800 to 1500 km) on a vehicle. Scorching the surface of the pad is one method of performing enough of a burnishing prior to packaging and distribution so that a pad can be used without delay. See "Scorching". On a vehicle or a dynamometer, another type of a burnishing cycle (also known as bed-in) is performed during a series of controlled stops. See "Bedding-in". This accomplishes two functions:
	 It completes the preparation of the pad material closest to the rotor to do its most effective work. A function also realized by Scorching. In the case of a pad material that works by adherent friction, it creates a controlled, uniform transfer layer of pad material on the surface of the brake rotor to promote what is termed an "adherent" friction mechanism. See "Adherent Friction".

The "hydraulic clamp" portion of a disc brake system. Manufactured from either ferrous or non-ferrous material and attached to the suspension upright (or "knuckle") the caliper typically holds the pads in place and, through the action of hydraulic pistons actuated by the master cylinder, forces them against the rotating surface of the disc when pressure is applied to the brake pedal.		
1. Fixed caliper:	A brake caliper in which two or more pistons are arranged on either side of a rigid body with the disc in the center. Due to its inherent stiffness the fixed caliper is the only design suitable for racing categories where it is allowed and is the preferred design for high performance cars. However, its commensurate increased size, cost, and weight prevent its widespread use on passenger vehicles.	
2. Floating caliper:	A design in which a single or dual piston is located inboard of the disc and the outer body of the caliper slides on suitable surfaces in reaction to piston pressure. The piston forces the inboard pad against the disc while the sliding outer body clamps the outboard pad against the disc. The inherent lack of rigidity in the design, compared to fixed caliper design, combined with the friction inherent in the sliding outer body makes this design less suitable for racing and high performance use. The design is well suited for use with front wheel drive as the absence of any outboard pistons allows greater negative (inward) wheel offset. In all applications, this caliper type is simpler to manufacture and affords more packaging flexibility for zero or even negative scrub radius front suspension designs. It is sometimes used in the rear on an application that has a fixed design in the front.	
3. Open caliper:	The design of fixed caliper in which the "window" through which the pads are inserted is structurally open. This design, while less expensive to manufacture, significantly reduces caliper rigidity or stiffness.	
4. Closed caliper:	The design of fixed caliper in which the "window" through which the pads are inserted is structurally reinforced by a bridge.	
5. Caliper bridge:	The structural reinforcement across the open face of a fixed caliper. In order to be effective the bridge must be bolted or pinned in place with the correct fasteners.	
The hydraulic cups that Manufactured from Alun mechanical design of th so the piston to bore cle design and location are OEM. In all cases that a the OE part. A braking system in whi	transmit line pressure to the pads to clamp the pads against the rotating disc. ninum, steel, stainless steel, Titanium or Phenolic and sealed in the caliper bores, the e piston is critical. Some movement of the pad can cause the piston to "cock" in its bore arance, thermal coefficients of expansion between piston and caliper as well as seal crucial. Care should be taken in using pistons or seals from a supplier other than an I Stoptech part is listed as a direct replacement for the OE part, it will work as well as ch both discs and pads are manufactured from carbon composite material. Utilized in	
The hydraulic cups that Manufactured from Alun mechanical design of th so the piston to bore cle design and location are OEM. In all cases that a the OE part. A braking system in whi every form of racing whi mass and inertia along v include cost, a certain a modulation. Contrary to metallic pads and cast is super speedways is the	transmit line pressure to the pads to clamp the pads against the rotating disc. ninum, steel, stainless steel, Titanium or Phenolic and sealed in the caliper bores, the e piston is critical. Some movement of the pad can cause the piston to "cock" in its bore arance, thermal coefficients of expansion between piston and caliper as well as seal crucial. Care should be taken in using pistons or seals from a supplier other than an a Stoptech part is listed as a direct replacement for the OE part, it will work as well as ch both discs and pads are manufactured from carbon composite material. Utilized in ere they are not outlawed, carbon/carbon brakes offer significant reduction in rotating with much greater thermal capacity and dimensional stability in use. The disadvantages mount of lag time while heat builds up (especially in the wet) and some difficulty in popular belief, the coefficient of friction is no better than that of state of the art carbon reduction of gyroscopic precession on corner entry.	
The hydraulic cups that Manufactured from Alun mechanical design of th so the piston to bore cle design and location are OEM. In all cases that a the OE part. A braking system in whi every form of racing whi every form of racing whi every form of racing whi nuclude cost, a certain a modulation. Contrary to metallic pads and cast ii super speedways is the Metallic iron containing less than 2%) and less t iron (sometimes referred specialized material for work correctly, the parts control the shape, distril distortion in machining, use.	transmit line pressure to the pads to clamp the pads against the rotating disc. ninum, steel, stainless steel, Titanium or Phenolic and sealed in the caliper bores, the e piston is critical. Some movement of the pad can cause the piston to "cock" in its bore arance, thermal coefficients of expansion between piston and caliper as well as seal crucial. Care should be taken in using pistons or seals from a supplier other than an 1 Stoptech part is listed as a direct replacement for the OE part, it will work as well as ch both discs and pads are manufactured from carbon composite material. Utilized in ere they are not outlawed, carbon/carbon brakes offer significant reduction in rotating with much greater thermal capacity and dimensional stability in use. The disadvantages mount of lag time while heat builds up (especially in the wet) and some difficulty in popular belief, the coefficient of friction is no better than that of state of the art carbon ron discs. The friction mechanism is characterized as adherent. A major advantage on reduction of gyroscopic precession on corner entry. more than 2% dissolved carbon within its matrix (as opposed to steel which contains than 4.5%. Because of its cost, relative ease of manufacture and thermal stability cast d to as "gray cast iron" because of its characteristic color, but is actually a more brake applications) is the material of choice for almost all automotive brake discs. To r must be produced at the foundry with tightly monitored chemistry and cooling cycles to oution and form of the precipitation of the excess carbon. This is done to minimize provide good wear characteristics, dampen vibration and resist cracking in subsequent	
	 the action of hydraulic p disc when pressure is a 1. Fixed caliper: 2. Floating caliper: 3. Open caliper: 4. Closed caliper: 5. Caliper bridge: 	

Ceramic buttons	Insulating buttons inserted in the face of racing caliper pistons to reduce conduction of heat to the brake fluid. Not currently use in racing except in so called "Spec Series" as Titanium buttons have proved more effective.
Ceramic coatings	Some racing calipers feature a ceramic coating sprayed onto the interior surfaces as a radiation barrier to reduce heat transfer from the disc and pads to the caliper and fluid.
Chase Test	The Chase test is a relatively simple friction testing method used to assign friction edge codes. See "Edge Code". The Chase test measures the coefficient of friction range to determine "normal and hot friction" when a 1" square piece of friction material is subjected to varying conditions of temperature, pressure and rubbing speed on a test machine, also known as a chase machine. See "J Standards, Procedures and Recommended Practices, SAE, J661".
Clamping force	The clamping force of a caliper in pounds, in inch-pound- second (IPS) units, is the brake line pressure, in psi (pounds per square inch),multiplied by the piston area, in square inches, of one half the caliper in a fixed caliper and the total piston area in a floating design. To increase the clamping force it is necessary to either increase the line pressure or the piston area. Increasing the pad area or the coefficient of friction will not increase clamping force.
Coefficient of friction	A dimensionless indication of the friction qualities of one material vs. another. See "Friction Coefficient".
Compressibility	All materials are compressible. Under enough pressure the rock of Gibraltar will compress to some extent. It is important that the friction material of the pad not compress significantly under the expected clamping force. If it does, pad wear will be uneven and braking efficiency will be compromised. Compressibility is seldom mentioned in advertising. It should be. Compressibility of a given material and the wear rates are the two primary factors that are considered in determining the size of a pad for a given application.
Conduction	One of only three heat transfer mechanisms. Convection and radiation are the other two. Conduction is the transfer of heat by physical contact. For example, some of the heat generated by the automobile braking system is transferred to the caliper pistons and thence to the brake fluid by conduction. Some of it is also transferred to the hub, upright (knuckle) bearings, and wheels in the same way. Two-piece or floating discs reduce conduction to the hub, and other parts because of the intervening hat. Conduction is also the strategy used in all designs to move the heat from the disc pad interface to the vanes. The sacrifices made if this is the primary strategy used for heat transfer are the weight and inertial penalty in a rotating part.
Convection	One of only three heat transfer mechanisms. Conduction and radiation are the other two. Convection is the transfer of heat by fluid flow. Air can be considered to be a fluid in a thermal model of a brake system when it is moving and is contact with the heated surfaces of the disc or drum. In the case of a solid disc the air moving over the surface of the disc functions to provide some cooling. In the case of a ventilated disc, by the pressure of a forced air duct or by induced flow that is a result of the centrifugal acceleration of the air already in the vent of a rotating disc, air flows through the vents. The air absorbs thermal energy along the vent path. In this way, the heat generated by the braking system of an automobile is transferred to the moving air stream and away from the brake disc.
Cracking	Cracking is primarily due to heat cycling that weakens the cast iron discs. The exact mechanism of this failure is disputed. Cast iron discs are formed with the excess carbon being precipitated in the form of carbon plates or flakes dispersed throughout the ferrite (iron) matrix. What is believed to happen is that when discs are operated above about 900° F, the carbon becomes more flexible or "fluid" in its shape partly due to the thermal expansion of the enclosing ferrite matrix. Then, as the disc cools relatively rapidly back below about 900° F the carbon is trapped in a changed more random shape then when it was first cast. This creates internal stress on the part and continuously transforms the disc by relieving the stress through the cracking. The cracks begin by appearing between carbon flakes. Nodular or ductile iron would resist this cracking due to the excess carbon being precipitated in a spheroidal form, but it, like other alternative materials do not have the mechanical properties needed to function ideally in a brake disc application. In discs that are cast to resist cracking through chemistry and controlled cooling at the foundry, cracking will still occur, but more slowly and take the form of heat checks on the surface. In some cases cracks will begin at the periphery of the disc and propagate inwards. In this situation, propagation can be delayed by drilling small holes at the out of the cracks (stop drilling). We do not recommend this however, because if the cracks continue to propagate unnoticed, catastrophic mechanical failure will result. Replace disc at the first sign of cracks at the outer edge of any size. A historic note, the original purpose of the curved or angled vane disc was to prevent cracks from propagating by imposing a solid vane in the path of the crack. An improvement in cooling function was secondary.
Cryogenic tempering	Cryogenic tempering is a one-time process that involves first extreme cold treatment followed by heat treatment of the metal part. When a brake rotor is cast and the molten iron cools to a solid form, the resulting structure of the iron at a microscopic level is often less than optimal and stress patterns are present that are unequally distributed throughout the part. Cryogenic tempering changes the material characteristics and reduces the internal stresses left from the casting process thereby permanently improving performance and service life of the metal.
Cryogenic treatment	Cryogenic treatment: A thermal process in which metallic components are slowly cooled to near zero degrees Kelvin (-273C ⁰ -459F ⁰) temperature and then equally slowly returned to room temperature. Proponents claim that stresses are relieved and that a transformation of the iron to a more uniform and favorable microstructure occurs. See also "Cryogenic Tempering".

D3EA®	D3EA® is an acronym for testing standard. It is a dyr performance during the sa closely replacement friction Since this test is not a Fed been peer reviewed or gain other proprietary claim. Alt the D3EA certification. The administered by the SAE.	Dual Dynamometer Differential Effects Analysis referring to a proprietary friction namometer protocol that measures a vehicle's front and rear brake component me test, hence the name Dual Dynamometer. The test is claimed to show how n materials match applicable FMVSS standards and the original OEM performance. eral or International standard and since it is only available from one source, has not ned wide acceptance, certification to the D3EA standard is no different than any ernately there is a BEEP process used by some friction suppliers not subscribing to BEEP process is a standard developed by an industry association and is See "FMVSS", "BEEP" and "SAE".
Differential bores	The leading edge of a brake pad wears faster than the trailing edge. This is due to the leading edge of the pad being drawn down into the rotor surface by the friction couple when the brakes are applied while the back edge is lifted. As well there is a migration of particles of incandescent friction material carried from the leading to trailing edge of the pad. In effect the trailing portion of the pad is riding on this layer of incandescent material. By providing an optimally designed larger caliper piston at the trailing edge of the pad, wear can be evened along the length of the pad	
Disc	The rotating portion of a di wheel and tire the disc pro friction surfaces. Except fo Some European front drive metal matrix rear discs to s	sc brake system. Mechanically attached to the axle, and therefore rotating with the vides the moving friction surface of the system while the pads provide the stationary r racing, discs are normally manufactured from one of several grades of cast iron. a passenger cars, where the rear brakes do very little work, are using aluminum save weight. Some forms of professional race cars use carbon/carbon discs.
	1. One-piece disc:	A disc cast in one piece with its hat or bell. This is the inexpensive way to manufacture a disc and is perfectly adequate for normal use. There are some tricks to the design to reduce distortion.
	2. Floating disc:	The norm in racing, the floating or two-piece disc consists of a friction disc mechanically attached to the hat either through dogs or through drive pins. Properly designed this system allows the disc to dilate (grow radially) without distortion and to float axially, greatly reducing drag.
	3. Solid disc:	A disc cast as a solid piece suitable for light cars not subjected to extreme braking.
	4. Ventilated disc:	A disc cast with internal cooling passages. The norm in racing, high performance and heavy vehicles.
Drive Cycle	Drive cycle is a term for dy context of testing friction m developed using on-vehicl velocity, handling and brak profile on a dynamometer measured service interval are added to measure roto develop that particular driv stops initiated by temperat	mamometer tests designed to simulate real world user profiles. For example in the naterial or components for use by Police Departments a drive cycle would be e data acquisition system like our Link 3801 or Racelogic V-Box to gather the entire ing profile of a typical shift. This data can be converted to simulate that particular and run for as many times as required to equal a daily or monthly use or the of the vehicle types. Other examples are used for race cars where additional sensors r and / or pad temperature and circuit pressure which is used to more accurately e cycle test. Another drive cycle test is as simple as developing a series of repetitive ure or distance and a preset deceleration rate for thousands of stop cycles or miles.
Drilled or cross-drilled rotors	Discs that have been drille number of paths to get rid material and to increase "b that all carbon –ceramic ro Typically in original equipm the best possible condition circumstances described in cooler than non-drilled ven supplemental inlets and in- through the vent to the OD chamfered (or, better yet, t	d through with a non-intersecting pattern of radial holes. The objects are to provide a of the boundary layer of out gassed volatiles and incandescent particles of friction bite" through the provision of many leading edges. The latter is the primary reason tors have drilled holes – they are present to improve the friction couple when wet nent road car applications these holes can be cast then finished machined to provide is by which to resist cracking in use. But they will crack eventually under the n another section (see Cracking). Properly designed, drilled discs tend to operate tilated discs of the same design due the higher flow rates through the vents from the creased surface area in the hole. That's right, inlets. The flow is into the hole and out of the disc. If discs are to be drilled, the external edges of the holes must be radiused) and should also be peened.
Drum in hat	A disc design in which the	internal surface of the hat serves as a brake drum. Often used as a parking brake.

DTV	Disc Thickness Variation, or DTV, is an industry term to describe a condition of the brake rotor where the surfaces of the friction plates (the flat surfaces that the pads rub against) are closer or father apart at different points in the rotation of the rotor. The variation in thickness of the rotor, if due to how the rotor was manufactured or later "turned" by a shop during a brake job, usually occurs at one point when the planes of the two friction plates surfaces are not parallel. When the brakes are applied, the hydraulic system moves and then holds the pistons so they press the pads against the friction plates. Subsequently, when the position is reached in the rotation of the rotor where the thickness of the rotor between the pads increases to its maximum, it causes an increase in clamping force and therefore torque on that wheel/ tire assembly and hydraulic circuit pressure. Then as the rotor turns past this point, the torque and pressure fall. Each rotation of the rotor causes this rise and fall in torque and pressure sending a pulsating input to both the steering wheel and the brake pedal. In the case that the condition described exists on both brake rotors on a front axle, the oscillating torque can cause a large side-to-side steering shake. This DTV that was originally due to the error in manufacturing, if slight and not noticed initially eventually develops into a noticeable problem when pad material is deposited on the thick position due to the rotor running much hotter there. A similar result can be seen when a car that has been driven hard is stopped when the pad and store and some of the pad material in the spot of greatest thickness. This condition is often called a warped rotor due to its characteristic oscillation with rotation of the rotor. This very slight build up of material then functions as described above when the rotor was made with a slight variation in thickness to promote the deposit of additional pad material in the spot of greatest thickness. This condition is often called a warp
Dust boots	Rubber shields that fit over the exposed portion of the caliper pistons to prevent the ingress of dust and road grime. As no known rubber compound will withstand the temperatures generated by racing brakes, dust boots are not used in racing and should be removed before truly hard driving for extended periods. New materials with silicone added have been developed to increase the temperature range where dust boots can be used.
EBD	Acronym for Electronic Brake Distribution. See "Electronic Brake Distribution".
Edge Code	Edge code is a term used in context with vehicle brakes that refers to a letter designation that is printed on the edge of the pad friction or backing plate that describes the friction characteristics of the material. The first letter describes the normal coefficient of friction. The second letter describes the hot coefficient of friction or friction fade resistance. See "Coefficient of Friction" and "Fade Resistance". It is meant to aid installers in making sure that the edge code of the friction material being installer matches the original specified for the vehicle. The importance placed on the edge code by an installer will differ and most often is based on the installer's experience with a particular product. As it was originally intended to be used, especially on the front of a vehicle, the installation of a pad friction with a lower designation in either letter position would not be recommended for brake balance and safety reasons. The application of Edge codes was originally outlined in SAE J866a. SAE J866a was based on the test procedure SAE J661. The J866a document is no longer an active SAE Recommend Practice, but it has been openly adopted by other countries. The British Standard BS AU-142 is an example. Subsequently there has been much debate about the determination of Edge codes including an SAE published paper refuting the use of the SAE J866a Recommended Practices and it was due to be withdrawn pending approval starting in 1995 of a new standard J1652, which itself was cancelled in May of 2002.

In each position of the edge code then, the letter corresponds to a result that fits the range in the table below.

Code Letter	Coefficient of Friction
Ċ	Not over 0.15
D	Over 0.15 but not over 0.25
E	Over 0.25 but not over 0.35
F	Over 0.35 but not over 0.45
G	Over 0.45 but not over 0.55
Н	Over 0.55
Z	Unclassified

Effective temperature range of operating temperatures within which a pad material remains effective or consistent. As with coefficient of friction, this should be used for comparative purposes only as measurement procedures very between manufacturers and pad temperatures are strongly affected by disc mass and rate of cooling. A similar term for Maximum Operating Temperature (MOT) is used to denote the upper limit of the temperature range.

Electronic Brake Distribution Electronic Brake Distribution systems differentially control the line pressure applied to the front and rear axle brakes under conditions that are similar to those where a pressure limiting valve or proportioning valve would function. EBD systems typically use software that is calibrated to perform the function of a brake line proportioning valve in combination with ABS system hardware to eliminate the need for a stand-alone valve. In most cases, disabling a vehicle's ABS will also disable the EBD function. Check with the vehicle manufacturer's documentation on the status of this important function if you plan to disable an ABS system. See "Proportioning valve".

Ether based brake fluid	"Normal" brake fluids are b Borate Ester fluids. DOT 3	based on Alkyl Polyglycol Ether Esters. Also, sometimes referred to as Glycol Ether and DOT4 fluids are suitable for high performance passenger car use.
Fade	Loss of braking efficiency from excessive thermal stress. There are three separate and distinct types of brake fade:	
	1. Pad fade:	When the temperature at the interface between the pad and the rotor exceeds the thermal capacity of the pad, the pad loses friction capability due partially to out-gassing of the binding agents in the pad compound. The brake pedal remains firm and solid but the car won't stop. The first indication is a distinctive and unpleasant smell, which should serve as a warning to reduce the thermal input to the brakes like by shifting to a lower gear to use more engine braking or slowing down, as when on a track, or both.
	2. Fluid boiling:	When the fluid boils in the calipers, gas bubbles are formed. Since gasses are compressible, the brake pedal becomes soft and "mushy" and pedal travel increases. You can probably still stop the car by pumping the pedal but efficient modulation is gone. This is a gradual process with lots of warning.
	3. Green fade:	When the pad is first placed in service the first few heat cycles will cause the volatile elements of the material to out gas. The process is continuous throughout the service life of the pad, but it is most pronounced in the bedding in process when the out-gassed materials form a slippery layer between the pad and the disc reducing the coefficient of friction to near zero. Once the pads are bedded in out-gassing is so slow as to not be a problem unless the effective temperature range of the pad is exceeded.

Fade Resistance	A term most often used fade"	in reference to a pad materials hot coefficient of friction performance. See "Fade, Pad	
Fine Casting Sand	Brake rotors are formed casting sand refers to th coarse and very coarse the foundry to achieve of pebbly or rough surface	d by sand casting. Molten iron is poured into a sand mold and allowed to cool. Fine ne size of each grain of sand. Sand is divided into 5 categories: very fine, fine, medium, b. Fine sand ranges in diameter from 0.125mm to 0.250mm. The use of fine sand allows good as-cast surface details. Conversely, the use of coarse sand would result in a b texture.	
Fireband	The name given to the that rotates with the dis	The name given to the boundary layer of out gassed volatiles and incandescent particles of friction material that rotates with the disc.	
FMSI	FMSI is an acronym for	FMSI is an acronym for Friction Material Standards Institute. See "Friction Material Standards Institute".	
FMVSS	FMVSS is an acronym to vehicle and component with passenger cars an	for Federal Motor Vehicle Safety Standard. It is a set U.S. Federal standards governing minimum performance criteria. The most commonly referred to standards in context d light trucks are:	
	1. FMVSS 105:	Prior to 2000 all new vehicles had to comply with this standard which specified maximum stopping distances according to vehicle weight, loading, pedal effort with and without power assistance and varying brake friction condition of as new, as burnished and fading.	
	2. FMVSS 106:	This standard governs hydraulic hose material, assembly, marking and testing.	
	3. FMVSS 135:	Since 2000, it is a tougher version of FMVSS 105 to address changes in vehicle technologies like ABS. Again this is a standard applicable to new vehicle only. See "ABS".	
Friction Coefficient	Friction Coefficient is a measure of the resistance to movement or sliding of a material over a surface. One model for defining Friction Coefficient is, in a gravitational field, when a block of a certain weight is standing still on a surface and is also tied on its side to a string parallel to the surface and the string passes over a pulley of negligible resistance to another block of variable weight hanging over the side of the surface, the weight of the second block that will yield the start of movement of the first block. The Friction Coefficient is the weight of the second (pulling) block divided by the weight of the first (starting stationary) block. In the context of a fully bedded vehicle friction and rotor combination this number is typically below 1 and is usually in the 0.3 to 0.6 range. This is often referred to in context with a certain set of conditions including temperature or if the pad set is "new" vs. broken in. The higher the coefficient, the greater the friction. Typical passenger car pad coefficients are in the neighborhood of 0.3 to 0.4. Racing pads are in the 0.5 to 0.6 range. The optimum is to select a pad with a virtually constant but decreasing coefficient over the expected operating range of temperatures. As a result, the driver does not have to wait for the pad to heat up before it bites, and the pad fade will not be a factor so that modulation will be easy (see "plot shape").		
Friction consistency	The variation in coefficient modulation and happy r	ent of friction over a range of repeated stops. Minimum variance allows efficient brake race car drivers.	
Friction couple	Often means the same conditions.	as friction coefficient. It is used in reference to the friction coefficient over a range of	
	Contrio Pa	rte Closeany of Braking Torme Day 3 15 11	

Friction level	See "Friction Coefficient"
Friction Material Standards Institute	Friction Material Standards Institute and is an association of friction producers and distributors like U.S. manufacturers of brake linings and/or clutch facings; foreign manufacturers and U.S. manufacturers of brake shoes or materials or tools for friction materials assembly. It functions to maintain an industry-wide numbering and cataloging system for brake linings so that replacement linings can be correctly manufactured and supplied. Centric Parts is a major member contributor to FMSI.
Friction Mechanisms	For a pad and disc to function as a brake there has to be the conversion of kinetic energy to heat. There are two primary models of the mechanism of this conversion; both involve the breaking of bonds to release energy. In the case of the abrasion model the bonds broken are the ones already existing in a material, please see Abrasive Friction. The bonds are broken due to the chafing or abrasion of a harder material or particle in direct contact with it. The second model is the adhesion/breakage model where temperature and pressure at the interface between the pad and disc surface cause the fusion of one material to the other or the diffusion of one material into the other. In this case, the instantaneous bonds formed in the process are broken releasing energy. Please see Adherent Friction. Pad materials function using both models at the same time or at different times. The abrasive mechanism predominates at lower temperatures but is also necessary to control buildup of low melting point pad materials a elevated temperatures where the adhesion-breakage mechanism is thought to predominate. The Abrasive Friction model is the primary mechanism with many high dusting European automotive designs where the disc wears observably as the pad wears. The iron in these discs is also typically a "softer" more dampened form of cast iron.
G3000 and G4000	G3000 and G4000 are two different grades of automotive gray iron casting material defined by the SAE J431 standard. Commonly used materials range from grade G1800 up to G4000. The percentage content of the minor constituents of the metal like carbon, iron, manganese, phosphorous, silicon and sulfur, plus the Brinell hardness and tensile strength distinguish one grade from the next. The higher material grades are characterized by lower carbon content and higher tensile strength and hardness. However, the SAE J431 standard is not a scale of quality. Each material grade in the range has an ideal or best use. For example, lower grade G1800 iron is well suited for casting brake drums while higher grades G3000, G3500 and G4000 are commonly used for replacement brake discs. Lower tensile strength typically yields a reduced tendency to make noise. What are sometimes referred to as noise dampened irons are often in the G1800 grade of iron. This grade can be used for brake rotors if the design and use profile takes the material strength into consideration.
Glycol brake fluid	See "ether based brake fluid"
Grooves	See "slotted"
Grooving	A wear pattern of concentric grooves on the surface of a disc. This can be caused by inclusions within the pad material, inappropriate pad material for the operating conditions, poor initial machining of the disc, and/or improper bedding in procedure. Not a major cause for concern on passenger cars. Often seen on drilled rotors in line with the drilled holes due to the area of the pad that is at the same radial height running cooler and enough cooler to where the an abrasive friction mechanism is more dominant. While in the area that is solid and running slightly hotter is where an adherent mechanism is more dominant. The resulting alternating abrasive Friction"
Heat checking	The precursor to cracking. Heat checks are actually surface cracks caused by thermal stress. By themselves heat checks are not a cause for concern on a street driven car but they are a warning sign that the disc is not receiving adequate cooling air and cracks are sure to follow. On a race car they are to be expected and should be monitored. See also the section "Cracking".
Hydraulic ratio	The ratio of fluid displacement by the master cylinder to fluid displaced in the caliper pistons. Hydraulic ratio is an important factor in the pedal effort equation, the higher the ratio, the less pedal effort is required but the longer the pedal travel to achieve a given clamping force. The stiffer the caliper design and the stiffer the pad, the higher the hydraulic ratio that can be employed.
Hydroscopic	A term often mistakenly used to describe a characteristic of most brake fluids to absorb water. The correct term to use is hygroscopic. See "Hygroscopic".
Hygroscopic	The property of readily absorbing water. All non-silicon based brake fluids are hygroscopic in nature. The adsorption of a minute amount of water will dramatically lower the boiling point of brake fluid. For this reason brake fluid should be completely replaced annually or more frequently in conditions of severe use. In professional racing, the fluid is replaced at least daily.

entric

"J Standards, Procedures or Recommended Practices, SAE". J Standards, Procedures or Recommended Practices are a series of formal opinion papers on various topics deemed to need documentation and input to the public, industry and governmental agencies by the Society of Automotive Engineers (SAE). They cover a broad range of topics but we will only outline the topics most relevant to vehicle brakes and brake testing here but more will be added as identified. The following statements of scope are copied from the actual SAE document descriptions:

- J431:
 "Automotive Grey Iron Castings", This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries.

 J866a:
 Was withdrawn pending approval starting in 1995 of SAE J1652. See J1652 below.

 J661:
 "Brake Lining Quality Control Test Procedure", The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.

 J1652:
 "Dynamometer Effectiveness Characterization Test for Passenger Car and Light Truck Caliper Disc Brake Friction Materials" was cancelled May 2002. It was
 - intended to address passenger car and light truck disc brake effectiveness. A formula was specified for calculating both normal and hot friction levels using an average recorded for 9 stops at 212°F and line pressures varying from 10 psi to 50 psi, followed by another 9 similar stops at 600°F.
- J2430: "Recommended Practice and its Application for Characterizing Aftermarket Brake Friction Material Effectiveness", the purpose of this paper is to describe the background and uses of the SAE J2430 Recommended practice for Dynamometer Effectiveness Test and the use of the BMC guidelines to characterize aftermarket friction material products as an advancement over the regular SAE J661 test, support the BMC resolution that aftermarket brake friction materials should not deteriorate vehicle performance below the applicable Federal Motor Vehicle Safety Standard.
- J2521: "Disc and Drum Brake Dynamometer Squeal Noise Matrix", This procedure is applicable to high frequency squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. The procedure does not encompass the consequences associate with changes in environment relate to temperature and humidity variations. Purpose This recommended test practice is intended to establish a common universally recognized method for performing a series of screening test sequences that identify the propensity of a brake assembly to generate squeal noise under a variety of test conditions.
- J2522: "Dynamometer Global Brake Effectiveness", This SAE Recommended Practice defines an Inertia Dynamometer Test procedure that assesses the effectiveness behavior of a friction material with regard to pressure, temperature and speed for motor vehicles fitted with hydraulic brake actuation. The main purpose of SAE J2522 is to compare friction materials under the most equal conditions possible. To account for the cooling behavior of different test stands, the fade sections are temperature-controlled. Also known as AK Master test. See "AK Master".
- J2707: "Wear Test Procedure on Inertia Dynamometer for Brake Friction Materials", This SAE Recommended Practice specifies a dynamometer test procedure to be used for the measurement of automotive service brake linings and disc brake pads wear. Special motor vehicles and motorcycles are excluded from the application. Trailers with nominal Gross Combination Weight Rating exceeding 40 tons are also excluded from this Recommended Practice.
- J2784: "FMVSS Inertia Dynamometer Test Procedure for Vehicles Below 4540 kg GVWR", This Recommended Practice is derived from the Federal Motor Vehicle Safety Standard 135 vehicle test protocol as a single-ended inertia-dynamometer test procedure. It measures brake output, friction material effectiveness, and corner performance in a controlled and repeatable environment. The test procedure also includes optional sections for parking brake output performance for rear brakes. It is applicable to brake corners from vehicles covered by the FMVSS 135 when using the appropriate brake hardware and test parameters. This procedure is applicable to all passenger cars and light trucks up to the GVWR weight limits named.
- Knockback springs Small coil springs fitted inside the caliper pistons of some brakes to prevent the pads from excessive knock back due to flexing of the suspension system or run out in the discs. If the disc run out is within specification and the upright/axle assembly is sufficiently rigid, there should be no need for knockback springs. However, when operating conditions are severe with regard to either generated side force or bumps, they may be required on the best of designs

LACT

An Acronym for LA City test. See "LA City Test".

LA City Test	The LA City test is an on-vehicle test. It was started in an era when different areas of the country were chosen to represent a typical user profile based on conditions like terrain, road conditions, traffic, temperature and humidity. There have been other similar test developed and in fact there is a new one for a drive between major cities in mainland China. The test can be simulated on the latest dynamometers to a degree, but nothing substitutes easily for the actual road conditions and traffic so test agencies including Link Engineering ®, Ford ®, and others offer the service of outfitting a car with multiple sensors and recording devices and hiring a driver to run the established route in LA city traffic. Primary output from the test is pad and rotor wear and Noise Vibration and Harshness (NVH).
Leading edge (of pad)	With respect to disc rotation the leading edge is that edge of the pad that first comes into contact with the disc when pedal pressure is applied. Unless differential piston diameters are used the leading edge wears faster than the trailing edge. See "Differential pistons" and "Taper wear".
Line pressure	See "Brake line pressure"
Master cylinder	The hydraulic cylinder that converts the driver's pedal effort into hydraulic fluid pressure for subsequent transmission to the operating end of the braking system (calipers).
Material transfer	Please see "Friction Mechanisms", where beneficial material transfer is discussed in context with the adhesion- breakage model. Otherwise, when the operating temperature of the pad (particularly organic pads) is exceeded, friction material may be deposited onto the surface of the disc in a non-uniform manner while degrading the braking capacity and causing noticeable roughness. The only cure is to either upgrade the pad material or increase the cooling (or both). "Pick up" should never be removed with ordinary sandpaper, which uses aluminum oxide as the abrasive. The same is true of sand blasting - don't do it. The correct way to remove pick up is by grinding (not turning) the disc. When that is not practical, the major portion can be removed by scraping and the remained sanded off with garnet paper.
Mechanical pedal ratio	The brake pedal is designed to multiply the driver's effort. The mechanical pedal ratio is the distance from the pedal pivot point to the effective center of the footpad divided by the distance from the pivot point to the master cylinder push rod. Typical ratios range from 4:1 to 9:1. The larger the ratio, the greater the force multiplication (and the longer the pedal travel).
Metal matrix (MMC)	Term applied to a family of composite materials consisting of metallic cores infused with "whiskers" or "grains" of very stiff non-metallic elements resulting in a light and strong material. The most popular of the metal matrix composites is Aluminum Ceramic metal matrix, the ceramic typically but not exclusively being composed of Silicon Carbide, Aluminum Oxides and Boron Carbides, which are well suited for use in racing calipers. Also, lightweight disc have been made for Original Equipment and aftermarket applications using Silicon Carbide and Aluminum Oxides, but with only limited success due to two factors, the first being a low maximum operating temperature of the materials mentioned of around 900° to 1000° F. Second the much greater expansion rate of the typically aluminum based MMC material results in thermal distortion or cracking. One OE application actually has small slots and stop drill holes positioned radially around the disc periphery. In all cases of MMC discs, the primary friction mechanism is the adhesion-breakage model. Please refer to the section, "Friction Mechanisms".
Modulation	The term given by the process by which the skilled driver controls the braking torque to maintain maximum retardation without locking wheels. Because the human being modulates most efficiently by force rather than displacement, effective brake modulation requires minimum pedal travel and maximum pedal firmness.
Monobloc caliper	A caliper machined from a single piece of billet, cast or forged material.
Mu	The name for the Greek letter "m" written as "M" and pronounced "mew". This symbol is used in mathematical formulas to replace friction coefficient. See "Friction Coefficient".
Multi pad systems	Caliper systems utilizing multiple pistons (either four six or eight) with separate pads and abutment systems for each pad. The design, almost universal in professional racing, provides multiple leading edges for better "bite". Unfortunately the short pad with any amount of pad thickness wants to tip in so much at the leading edge and lift at the trailing edge that longitudinal taper occurs if the piston is positioned symmetrically in the pad cavity. Only by placing the piston on the trailing side of the pad cavity can it manage this tendency just like differential bores in modern racing caliper does.
NAO Friction	This is an abbreviation for Non-Asbestos Organic friction. The use of the term was stimulated by the trend to discontinue the use of Asbestos in the U.S. due to concerns over health risks. NAO friction material formulas were developed to replace asbestos with other kinds of fiber including Kevlar ®. See "Asbestos".
OE	This is an abbreviation for Original Equipment. Please see the section "Original Equipment". Sometimes it is used as an abbreviation to refer to the Original Equipment Manufacturer (but more correctly referred to as the OEM).
OEM	This is an abbreviation for Original Equipment Manufacturer.
Off brake drag	A condition in which the caliper pistons do not fully retract when line pressure is released. Off brake drag increases temperature and wear while decreasing acceleration, top speed and fuel mileage. It is caused by either non-optimum seal design, seals that have been hardened by thermal stress or excessive disc run out.

Original Equipment	This is an industry standard term for that equipment that was installed on the model(s), being referred to in context, at the time of manufacture.		
Organic (pad material)	A family of friction materials, often containing asbestos, used for both drum linings and disc pads through the 1980s. Now largely supplanted by semi-metallic materials with better temperature characteristics, but new non-asbestos organic (NAO) compounds can be found as well.		
Out-gassing	The boiling off of the volatile elements in friction materials. Out-gassing, while it is continuous over the useful life of the pad, is only noticeable during the bedding in process or when the temperature capability of the pad has been exceeded. Under those conditions the volatiles form a layer between the friction materials and the disc surface, smelling bad and causing "green fade".		
Pad	The stationary element of the disc brake system. The pads, consisting of friction material bonded to steel backing plates are held in place by the caliper and forced against the disc by the caliper pistons when pedal pressure is applied.		
Pad abutments (or pad abutment plates)	Mechanical elements that locate the pads in the caliper and provide a hard surface for the pads to slide against. Non-ferrous (Aluminum or MMC) calipers, which do not provide a hard and smooth surface to locate the ends of the pads and provide an efficient sliding surface, should be viewed with great suspicion.		
Pad retraction	To prevent drag and premature pad wear the properly designed seal systems retract the caliper pistons a few thousandths of an inch when the pedal pressure is released. This allows what little disc run out there is to "knock" the pads back from contact with the disc. When everything works right the amount of retraction is so slight that the free play is not noticeable when pedal pressure is applied.		
Performance Balanced Brake System	During a single stopping event, if braking force is continuously increased, the car's tires must eventually break traction. If the front wheels reach their traction limit first, we say that the car is "front biased", as the front tires are the limiting factor for deceleration. If the rear tires are the first to reach their traction limit, we say that the car is "front biased." In either case, the tires at one end of the car have reached their limit before the tires at the other are able to make their full contribution to the braking event, limiting the ultimate deceleration capability of the car. Pioneered by StopTech, the Performance Balanced Brake System is created by matching brake component dimensions such as number of caliper pistons, piston sizes, and rotor diameter to the vehicle's dynamic weight transfer that occurs under braking. The ultimate goal of the Performance Balanced Brake System is to distribute the braking forces so that all four tires are simultaneously generating their maximum deceleration, thereby minimizing stopping distances.		
Pick up	See the section "Material Transfer"		
Plot shape	The shape of the friction plot during a long brake application. It is easier and more efficient for the driver to add pedal pressure than to remove it. Therefore the easiest pad to modulate exhibits a high initial bite followed by a gradual decrease in coefficient throughout the stop. If the level of friction rises throughout the stop, brake modulation will be very difficult.		
Positive molding	Positive molding uses extreme pressure to compress the friction material and bond it to the backing plate. This process assures consistent friction material density throughout the pad, resulting in even wear and performance characteristics throughout the life of the brake pad.		
Post Curing	After the friction material has been formed and bonded to the backing plate (as in the case of integrally molded brake pads), the brake pad always undergoes a curing operation known as Post Curing. Additional subsequent Post Curing (heat treating) is sometimes used to help remove more uncured resin, but is not a substitute for a process called Scorching. See "Scorching".		
Pressure bleeder	A tool allowing rapid bleeding of the system and replenishment of the fluid. Pressure bleeders should never be used on racing or high performance cars as the rapid forcing of the fluid through small passages may cause cavitation and the formation of air bubbles rather than their removal. At no time should a pressure bleeder be used which does not contain a physical separation (either through a flexible diaphragm or otherwise) between the brake fluid and the pressurizing agent (air).		
Proportioning valve	What is often referred to as a Proportioning Valve is really a Pressure Limiting Valve. Its function is to limit the amount of pressure transmitted to the rear brakes under very heavy braking. Front and rear line pressures are the same until some pre-determined "knee" point is reached. After this point, rear line pressure, while it still increases linearly with pedal effort, increases at a lower rate (slope) than front. The purpose is to avoid rear wheel lockup and the attendant unstable condition. It is not a good idea to remove the proportioning valve from an automobile intended to be used on the highway. If you feel that you must do so, the best way is to remove the OEM rear brake line proportioning valve completely and replace at with one of the adjustable units manufactured by Tilton Engineering or Automotive Products. Do not place a second proportioning function, eliminating the need for a stand-alone valve. This feature if present in an ABS system is sometimes referred to as Electronic Brake Distribution (EBD) because it functions, as the name implies, to differentially control the applied line pressure on the front and rear axle brakes under conditions that are similar to the line proportioning valve. In most cases, disabling the ABS systems will also disable the EBD function.		

Radiation	One of only three heat transfer mechanisms. Conduction and Convection are the other two. Radiation is the transmission of energy by the emission of waves. In the case of braking systems, thermal energy is emitted by both the discs and the pads at elevated temperature. In the case of the disc, as temperature increases, radiation is the predominant heat transfer mechanism. In fact radiation increase by the X^4 for every increment of temperature rise. Often the focus in disc designs is on the vent or the vanes because it is something that can be changed significantly at a reasonable cost. While radiation is a function of the material choices made and rotor friction surface area, keeping in mind the other functional parameters necessary for the application. A large portion of this radiant energy can be reflected into the air stream by "radiant barriers", such as ceramic coatings on the internal surfaces of calipers.		
Release characteristics	The opposite of "bite", release characteristics become important when braking into turns either on the track or on the road. If the braking torque does not decrease linearly with decreasing pedal pressure "trail braking" becomes difficult at best.		
Reservoir	The container in which brake fluid is stored to provide a source of fluid for the master cylinder(s). The reservoir must have sufficient volume to allow fluid displacement equivalent to wearing the pads down past the backing plates. It must also be sealed to prevent the absorption of moisture by the highly hygroscopic brake fluid. Typically the reservoir cap is fitted with an elastomeric bellows open to atmosphere but sealed from the fluid.		
Residual pressure valve	Some passenger cars, particularly those equipped with drum rear brakes, are fitted with a "residual pressure valve" which functions to ensure that the pads are kept in close proximity to the discs despite run out, knock back, etc. The residual pressure is very small (2-4psi.) so off brake drag is not a problem for street use.		
RMS	Root Mean Square is a statistical measurement of the magnitude of a variance, i.e. a math equation. In the context of brake rotors, the many small peaks and valleys that make up the surface finish of a brake rotor can be measured in micro-inches and input into the RMS equation. The resulting value can be compared to a range of measurements obtained from other new OEM and aftermarket rotors and provide an indication of how smooth or uniform the surface is. If one rotor has a low RMS value and a second rotor has high RMS value, the rotor with the lower value has the smoother surface condition within the measured area.		
Rotor	See "Disc"		
Rotor balance	A brake rotor is in a state of perfect static balance when its center of mass is on the axis of rotation. Imagine a rotor rotating on a very thin axle. If the rotor's center of mass coincided with a line drawn through the center of the axle, it would be perfectly balanced. Any error in the position of the center of mass relative to the center of rotation leads to an imbalance. An ounce-inch is the common unit of imbalance. For a rotor, this is calculated by multiplying the error in the location of the center of mass, in this case in inches, by the weight of the rotor, measured in this case in ounces. Correspondingly, a balance correction is calculated by multiplying the radius, or distance from the center of rotation at which correction weight is to be added or removed, by the weight that must be added or removed to achieve perfect balance. There is a common metric based version of the unit of imbalance called gram-cm. Example: A rotor with 12-in diameter has a mass of 21 lb, or 336 oz. The center of mass of the rotor after it is cast and machined ends up 0.010 in. (0.25 mm) from the center of the part. The "heavy point", or correct location to remove this weight, will be centered on a radius starting at the geometric center of the part and passing through the center of mass.		
Run out	The amount of axial dimensional variation of the surface of the disc as it rotates. Measured with a dial indicator, normal specification is 0.000 to 0.005" total indicated run out also called "TIR". Excessive run out can result in inefficient braking and perceptible pedal pulsation. Also see "TIR"		
SAE	An acronym for Society of Automotive Engineers. Also see "J Standards or Recommended Practices, SAE".		
Scorching	This OEM process enhances key friction performance levels beyond what can be done with post curing alone. Scorching raises initial cold effectiveness, stabilizes friction levels right out of the box, and provides improved performance across the entire operating range. During the scorching process, the brake pad face is superheated on a conveyor by a series of concentrated infrared radiation heat sources to provide complete removal of any uncured bonding agents near the surface. In so doing, it eliminates the need for initial break-in and reduces the chance of noise caused by pad glazing. Scorching also thermally conditions the rest of the pad material like subsequent post curing to yield a more consistent and higher friction level throughout the life of the pad. Sometimes the term post curing or burnishing will be used as equal to Scorching. This simply isn't true in process design, equipment used or effect. See "Post Curing" and "Burnishing".		
Seals	Caliper pistons are sealed in their bores by elastomeric rings seated in grooves. The seals fulfill a secondary function of slightly retracting the pistons when line pressure reduced to zero at the end of braking. This prevents "off brake pad drag", reducing both temperature and wear. Both the compound and the mechanical design of these seals are critical. The cross section of properly designed caliper seals is square, not round. "O" rings cannot be substituted.		
Seal grooves	The caliper seal grooves can be either in the caliper bore or on the piston (or both). The mechanical design of the grooves is critical to ensure optimum piston retraction. The cross section of a proper caliper piston seal groove is trapezoidal, not square.		
Semi-metallic	Friction materials compounded with significant amounts of metallic elements to increase the operating temperature range.		

Silicone brake fluid	Brake fluid based on silicone. While silicon based fluids are less hygroscopic than ether based fluids, they are subject to "frothing" when subjected to high frequency vibration and when forced through small orifices. This makes them unsuitable for racing or high performance use.		
Sliding caliper	See "Caliper, Floating Calip	per"	
Slotted	1. Disc:	Shallow, sharp edged but radiused bottom grooves milled into cast iron discs to provide leading edges for bite and a path for the fire band of gases and incandescent friction material to be dissipated through. If the slots fill up with pad material, the system is operating at too high a temperature.	
	2. Pad:	Radial grooves molded or cut into the surface of the pad to provide a path for fire band dissipation and to double the number of leading edges and improve bite. Some long pads also have a longitudinal groove.	
Squeal	Annoying high-pitched noise associated with some combinations of friction materials at low brake torque values. Reduced by the use of anti squeal plates. Can be improved by a different pad material, but also made worse if the former and current pad materials are incompatible.		
Squeeze form casting	A casting process that is a cross between die casting and forging. Liquid aluminum is poured into a die and, just before it begins to solidify, the die is forced closed under very high pressure. Alternatively a second cylinder is filled during the molding other than the primary injection cylinder that is then compressed at high pressure to increase the molding pressure. The process reduces porosity and leaves the grain structure more like a forging than a casting - resulting in a stronger part.		
Stainless steel brake lines	Flexible brake hoses made of extruded Teflon® protected by a tightly braided cover of stainless steel wire. Because these hoses virtually eliminate line swelling under pressure, and because they offer superior mechanical protection for the brake line itself, they are universally used in racing applications to reduce pedal travel, increase pedal firmness and allow more efficient brake modulation. A few manufacturers offer stainless steel braid protected hoses of extruded Teflon which meet all of the DOT requirements for passenger car use. Several more offer hoses which claim to meet the specification but do not. Let the buyer beware.		
Stiffness	Stiffness is the resistance of stiffness of a material is inc bonds within the material. I composite materials are us	of a material or a structure to deformation. It is not the same as strength. The dicated by its "modulus of elasticity" - the measure of the elasticity of the atomic it is essential that calipers (and caliper mountings) be stiff. Which is why metal matrix sed for racing calipers.	
Strength	Strength is the resistance of a material or structure to rupture. It is defined as the stress required to rupture the atomic bonds of a material. It is not the same as stiffness.		
Taper wear	Uneven wear of brake pads caused by geometry, by the difference in temperature between leading and trailing edges and/or by lack of stiffness in the caliper. When pads are taper worn, the first increments of caliper piston travel are used up in forcing the pad against the disc, increasing pedal travel. Additionally the piston tends to cock in its bore resulting in bore scoring and wear.		
	1. Radial taper:	Radial taper is apparent when the pad is viewed from either end. The linear speed between pad and disc is greater at the periphery of the disc and so the outer surface of the pad wears faster. In addition any tendency for the caliper to "open up" under pressure like a clamshell results in more pressure being placed on the outer portion of the pad, further increasing relative wear. For this reason many pads are trapezoidal in plan view with less surface area toward the inside.	
	2. Longitudinal taper:	Longitudinal taper is apparent when viewed from either the inner or outer surface of the pad. The trailing section of the pad is partially floated in the boundary layer of out-gassed volatiles and incandescent particles of friction material torn from the leading section. The leading edge of the pad will therefore always run hotter and wear faster than the trailing edge. This phenomenon is more pronounced in long pads and is one of the major reasons why racing calipers are designed with a multitude of small pads. (See "Multi piston calipers").	
TIR	An Acronym for Total Indic reading observed. The actu TIR.	ated Run out. See "Run out". It is the difference between the highest and lowest ual geometric positional error of the axis of rotation of the part will be one half of the	
Thickness Variation (TV)	Variation in the transfer layer, which initiates brake vibration. While the impact of an uneven transfer layer is almost imperceptible at first, as the pad starts riding the high and low spots, more and more TV will be naturally generated until the vibration is much more evident. With prolonged exposure, the high spots can become hot spots and can actually change the metallurgy of the rotor in those areas, creating "hard" spots in the rotor face that are virtually impossible to remove.		

Thermal shock	Disc materials, particularly cast iron are degraded not only by the magnitude of temperatures reached, but also by the "delta" temperatures - the speed at which the temperature increases and decreases. In grey iron, cracks are caused by weakening of the bonds between the grains of the metal brought about by rapid change in temperature as well as the increasingly disorganized shape and structure of the carbon in the form of flakes that are precipitated in the iron matrix.				
Threshold braking	Braking at maximum possible retardation in a straight line. In non-ABS controlled scenarios it described the situation where the driver controlled the brake force he applied near or at that limit, hence the name. In ABS controlled systems while the driver applies maximum force, the hardware and its programming cycle the force applied back and forth over the instantaneous limit of friction couple available.				
Titanium	A very light, very strong metal will very low thermal conductivity. Almost universally used to make caliper pistons for racing applications in order to reduce heat transfer to the fluid within the caliper.				
Trail braking:	The process in which the skilled driver "trails off" the brakes as he enters a corner, thus combining braking and turning in the initial phase of the corner and maximizing the total traction available from the tires. The technique, universal in racing, although not always admitted, also effectively lengthens the straight preceding the corner.				
Trailing edge (of pad)	That portion of the pad located away from the direction of rotation of the disc.				
Transfer Layer	An even layer of brake pad material on the rubbing surface of the rotor disc. Note the emphasis on the word even, as uneven pad deposits on the rotor face are the number one, and almost exclusive cause of brake judder or vibration. See 'Brake Judder' and 'Warped Rotors'.				
Two part (piece) caliper	A caliper manufactured from two essentially mirror imaged parts rigidly bolted together. To perform as well as a monobloc caliper, the assembly must result in a rigid structure by design, bolt selection and materials.				
Vanes	The term given to the central webs which serve to separate the inboard and outboard friction surfaces of ventilated discs.				
	1. Straight vanes:	Straight vanes are the easiest to manufacture. They extend in straight lines radially outward from the inner surface to the outer surface of the disc. This design is often used in production automobiles and trucks because the same part can be used on both sides of the vehicle. This design tends to promote non-uniform pad transfer over the vane due to higher stiffness of the roter surface at this location compared to the area over the vent immediately ahead or behind the vane.			
	2. Curved vanes:	Curved vanes are shaped as curves to act as more efficient pump impellers and increase mass airflow through the central portion of the disc. They also act as barriers to the propagation of cracks caused by thermal stress and, as each vane overlaps the next, they dimensionally stabilize the disc. These designs will reduce non-uniform pad transfer due to the more uniform stiffness of the friction surface relative to the travel of the pad, unlike the straight vane design. Curved vane discs are more expensive to produce than straight vanes and must be mounted directionally. They are universally used in racing where carbon/carbon brakes are prohibited.			
	3. Islands or Pillar:	Some designs utilize "islands" to separate the friction surfaces rather than vanes. Properly designed the island system is dimensionally stable and will reduce non- uniform pad transfer but are inefficient from the viewpoint of airflow compared to curve vane and so are not seen in racing. This vane design type is also generally heavier as the design engineer will substitute mass for convective cooling capacity.			
	4. Differential vanes:	Some discs are designed with alternating vanes of different length. This modern design feature has been dictated by flow studies. It was found that the volume of air that a disc can flow increases by alternating the length of the inlet without much of a sacrifice in surface area. The more air a vent flows, the more convective cooling can be realized.			

Warped Rotors
 The term warped rotors is incorrectly used in most situations. The term is used most often to mean vibration and roughness when the vehicle brakes are applied, but the cause is not a permanent distortion of the rotor because one of the characteristics of the gray iron used in almost all rotors including racing is the high stiffness quotient of the material called the Young's Modulus. Instead the roughness that is observed is caused by a previous unsuccessful machining of the rotor by a service provider or the non-uniform transfer of adherent pad friction material. Once the deposit of pad material is present, a re-machining of the rotor surface appears to solve the problem temporarily, seeming to confirm the idea that the rotor was warped. The problem is, if the vibration existed for even a short time, that conversion of the iron below the deposit to cementite a iron-carbide has occurred. Cementite is harder than the base iron matrix so when turned on a brake lathe, the harder deposit area will deflect the nose radius on the cutting tool and the high spot will re-start. Surface grinding of the rotor will produce a suitable result if the two friction ", "Brake Judder" and Transfer Layer".
 Wear sensors
 To ensure that pads are replaced before they are worn down to the backing plates, several types of wear sensors are employed. Some cars use an electronic wear sensor in the pad. This type of sensor typically is worn through when wear limits are reached, breaking continuity in the sensor circuit. As such, it needs to be replaced if the light has come on. There is another less expensive method used where the pad has a thin but stiff tab riveted to the pad backing plate that rubs on the disc face and squeals when the wear limit is reached. In some modern racecars used in long distance events, calipers are fitted with more complex electronic sensors and circuitry to warn the drivers and, by telemetry, the crew of the pad condition.

